
In Spencer Johnson’s “Who Moved My
Cheese?” [1], the little people keep com-

ing back to where the cheese used to be
even though it is not there anymore. It is
a natural tendency to continue doing what
we have always done even when, to an
outside observer, it no longer makes
sense. This behavior is quite common
when projects get into trouble. We keep
plodding away at the project hoping that
the problems will go away and the cheese
will miraculously reappear. In all too
many cases, it does not.

Just as the smart thing to do when a
ball of twine seems hopelessly entangled is
to stop whatever we are doing with it (oth-
erwise the tangle gets worse), so it often is
with a disastrous project: The longer we
keep at it, the worse it gets. At some point,
we need to halt all activity and reassess
what we are doing.

Disastrous software projects, or cata-
strophes, are projects that are completely
out of control in one or more of the fol-
lowing aspects: schedule, budget, or quali-
ty. They are by no means rare – 44 percent
of surveyed development organizations
report that they have had software projects
cancelled or abandoned due to significant
overruns, and 15 percent say that it has
happened to more than 10 percent of their
projects (see Figure 1).

But, obviously, not every overrun or
quality problem means a project is out of
control, so at which point should we
define a software project as a catastrophe?
What are the criteria for taking the drastic
step of halting all activities, and how do we
go about reassessing the project? Most
importantly, how do we get the project
moving again? The answers to these ques-
tions are the essence of the concept of cat-
astrophe disentanglement.

When Is a Project a
Catastrophe?
Organizations and projects vary to such an
extent that there can be no universal crite-

ria for branding a software project a cata-
strophe. The expectations from mission-
critical, life support, or banking software
are significantly different than from most
consumer- or Internet-based software
applications. But experience shows that in
virtually all cases, projects are in deep trou-
ble if serious problems have existed for
quite a while and the situation is getting
worse, not better. How is this reflected in
terms of schedule, budget, and quality?

Schedule
Software projects rarely or never strictly
follow their schedule; delays often grow
and shrink like an accordion. It is a sad
reality that software project delays are an
excessively common occurrence (see
Figure 21). But we are not looking at just
any delay; the issue here is to identify those
projects where the delay is growing uncon-
trollably.

To determine if the delay is out of
control, divide the total development
schedule into 12 phases, and look at each
of the last three. Has the delay steadily
grown in each phase? Is the total delay
now greater than three phases (i.e., 25 per-
cent of the total project schedule)?

On a one-year schedule, for example,
look at the last three months and ask the
following questions:
1. Was the delay significant two months

ago?
2. Was the delay even greater one month

ago?
3. This month, has the delay grown

again?
4. Has the delay growth been steady (that

is, not two small delays and one major
delay caused by an identifiable event)?

5. Is the total delay now greater than
three months?

If the answer to these questions is yes, it is
probably a good idea to halt the project
and reassess it.

Budget
A project is a budget catastrophe if its
remaining projected cost far exceeds what

the development organization is willing to
pay for it. In software projects, major bud-
get overruns are often the result of sched-
ule overruns or of attempts to reduce
schedule overruns (e.g., by adding staff).
The following are points to consider:
1. Does the project schedule appear to be

a catastrophe? If so, project cost pro-
jections have little value at this time.

2. If the project schedule appears to be
under control, then extrapolate budget
overruns for the past three phases up
to the end of the most current project
schedule (assume that every future
phase will continue to exceed the bud-
get at a similar rate). Is this a cost your
organization can bear?

3. Do you have current feedback from
the project’s customers and users? Do
you have updated market research
data? Is the original cost/value analysis
for this project still valid?

Quality
A software project is a quality catastrophe
if (a) the list of serious quality problems
has been substantial for three periods and
is not decreasing, or if (b)
customers/users who have evaluated the
software that is being developed are excep-
tionally critical of it.

The project problem list is a good indi-
cator of how serious the problems are.
The list is commonly divided into (a) criti-
cal, (b) serious, and (c) minor problems.
The following are points to consider:
1. Is the critical problem list growing?

Are problems being resolved? How
fast are new problems being added?

2. The second level of serious quality
problems can also indicate the gravity
of the situation if the list is particular-
ly long and not getting any shorter.

3. Another indicator to monitor is how
well the quality problem lists are being
maintained. Are problems being cate-
gorized correctly? Are problems being
removed prematurely from the list?
Are new problems being withheld
from the list?

10 CROSSTALK The Journal of Defense Software Engineering October 2004

Catastrophe Disentanglement:
Getting Software Projects Back on Track©

If you are responsible for a late and over-budget software project, you are not alone – software project overruns are all too common.
But if serious problems have existed for quite a while and the situation is getting worse, not better, you may have a project cata-
strophe on your hands. At this point, there is no established rescue process to follow. Dealing effectively with an out-of-control pro-
ject is as much an emotional challenge as it is a managerial and technical one. This article describes a 10-step process to disentan-
gle a software project catastrophe and get it back on track.

E.M. Bennatan
Advanced Project Solutions, Inc.

© 2004 E.M. Bennatan. Advanced Project Solutions, Inc.

October 2004 www.stsc.hill.af.mil 11

Severe quality problems (those that are
either critical or most serious) are often
difficult, if not impossible, to see in the
early stages of a project. In fact, many
severe quality problems emerge only
toward the end of a project (and some-
times only after its release). Even the last-
three-phases technique can be ineffective
during the first half of a project because
too often problem lists have not yet been
compiled or well maintained.

But project quality issues can be mon-
itored from the outset if there is someone
whose job it is to do so. This means
assigning an independent software quality
assurance (SQA) professional to every
project team as soon as the project is
launched. For small development teams,
one SQA professional can be responsible
for two or three projects, though large
projects should have their own indigenous
SQA team.

Customer and user feedback is the
best source for evaluating project quality.
Unfortunately, it is sometimes difficult to
get feedback until a project is close to
release. For large projects, it is often worth
investing in prototypes and pre-releases,
thus getting preliminary versions of the
software into the users’ hands for early
evaluation and feedback. This investment
is like an insurance policy: It reduces the
risk of major product quality issues – but
at a cost.

The Project Is a Catastrophe –
Now What?
The following 10 steps describe the
process for disentangling a failing software
project and getting it back on track.
Because these steps intrude on the respon-
sibilities of the team members – most
especially the project manager – the
process should be confined to getting the
project back on track and nothing more.
Ultimately, the new project plan must gain
the unreserved support of the develop-
ment team members, and the details
should be left up to them.

1. Stop
Once you have determined that a software
project is unlikely to be completed with
any reasonable degree of success, the next
step is painful but clear: Stop all activities
immediately. This is a difficult decision
because it will always be open to harsh crit-
icism from some circles. It is also a tough
decision because, as we have seen, there is
really no airtight algorithm for determining
that a project is a catastrophe. Ultimately,
the decision is a combination of data
analysis and management experience.

Stopping a project should never leave a
team idle. There is much to do in prepar-
ing the project for assessment, including
the following:
• Collecting and updating project docu-

mentation and data.
• Preparing status reports for each team

member and each team.
• Bringing the project software to the

nearest point (backward, not forward)
for demonstration. This means that
except for minor exceptions, no new
code should be written and no new fea-
tures should be added or integrated
(otherwise there is a risk that the
demonstration will take too long to
prepare).

• Assisting the project evaluator.
In addition, other activities should be

prepared and held in reserve such as train-
ing and assistance to other projects.

2.Assign An Evaluator
Virtually all software projects in trouble
have strong emotional and political hall-
marks that often produce passionate
advocates and opponents. Therefore, the
importance of using an external project
evaluator cannot be overstated. This will
increase the likelihood of getting an unbi-

ased and unemotional evaluation.
Whom should you choose? Ideally, you

should assign a reliable, pragmatic, experi-
enced, and successful project evaluator
who (a) understands the project technolo-
gy, (b) has good social skills, and (c) can
reprioritize other responsibilities to allow
sufficient time for the evaluation.

For very large projects, use an evalua-
tion team of two or more evaluators but

Catastrophe Disentanglement: Getting Software Projects Back on Track

Figure 2: Percentage of Software Projects Completed Within 10 Percent of Original Estimated Time
in the Past Three Years [2]

Figure 1: Percentage of Abandoned or Cancelled Software Projects Due to Significant Cost or Time
Overruns in the Past Three Years [2]

Ten Steps to Disentangle a
Software Project Catastrophe

1. Stop.
2. Assign an external, unbiased

evaluator.
3. Evaluate true project status (what

has been achieved and what has not).
4. Evaluate team capabilities.
5. Define new minimal goals and

requirements with senior (executive)
management and customers.

6. Determine if minimum goals can
be achieved (if not, then abandon,
find alternative to the project).

7. Rebuild the project team.
8. Perform high-level risk analysis.
9. Develop reasonable estimates.

10. Install an early warning system.

12 CROSSTALK The Journal of Defense Software Engineering October 2004

Project Management

with a clearly designated chief evaluator.

3. Evaluate Project Status
The first challenge in evaluating a project
is to determine its true status. Most failed
software projects will have produced many
status reports – some may even be quite
positive – but they will not necessarily be
objective or dispassionate. In establishing
an unbiased view of the project status, do
the following:
• Reduce tension by involving the pro-

ject team in your evaluation and by
being completely open (no secrecy or
mysterious behind-closed-doors dis-
cussions).

• Consider only observable facts (e.g.,
not, “This feature used to work well
but something has gone wrong.”).

• Consider accomplishments, not effort.
• For almost completed tasks, apply the

90-50 rule. (It takes 50 percent of the time
to do 90 percent of the work and another 50
percent to do the remaining 10 percent.)

• Present your evaluation to the team
before finalizing it and consider their
responses (look for details and facts
that you overlooked or misunderstood,
while resisting undue pressure to
amend your findings).

4. Evaluate the Team
Evaluating a team is a sensitive activity that
should be handled both resolutely and
tactfully. This step is purely part of the
evaluation process and does not, at this
point, result in any restructuring of the
team. The following are questions to be
considered:
• Does the project team have the neces-

sary skill set and experience to success-
fully deliver the project?

• Do the team leaders have the leader-
ship, technical skills, and the personali-
ty necessary to lead their team?

• Does the project manager have the
required leadership, technical skills, and
personality necessary to lead the project
team, and does he or she command the
respect of the team members?

• Are there any internal team conflicts or
tensions that could disrupt the project?

• What is the level of team spirit and
morale? If low, then why? (Are there rea-
sons beyond the failing of the project?)

5. Define Minimum Goals
The emphasis here is on the word mini-
mum; the project should be reduced to the
smallest size that achieves only the most
essential goals. This resetting of goals and
objectives can only be performed with the
active involvement of senior (executive)
management and the customer 2. Divide all

project requirements into three sets:
• Set One: Essential requirements with-

out which the project has no value.
• Set Two: Important requirements that

greatly improve the project but are not
essential.

• Set Three: Nice-to-have requirements
that add to the project, but are not
especially important.
Now, start by retaining the require-

ments from set one, and initially eliminat-
ing sets two, and three. This will often cre-
ate tremendous opposition, but remember
– we are dealing with a project that was
totally out of control and may otherwise
be cancelled. Occasionally, some elements
from set two can be added, but this should
be rare. All remaining requirements (from
sets two and three) should be targeted for
subsequent releases of the software.

Here is a word of caution: Be prepared
to forestall the ploy by some stakeholders
to second-guess the whole evaluation
process by their insistence on listing all (or
most) requirements in set one.

6. Can Minimum Goals Be Achieved?
The main challenge here is to determine
whether the requirements in set one can
reasonably be achieved. The questions to
be addressed are the following:
• Is set one a genuine and significant

reduction of the project scope?
• Is there a single requirement in set one

that adds an order of magnitude to the
complexity of the project? If so, are
members of management aware of this
and will they reconsider its inclusion3?

• Are the new project goals now achiev-
able? Is there now a reasonable chance
that the team will be able to deliver the
requirements in an acceptable time-
frame, within a reasonable budget, and
with an acceptable quality level?

• How genuinely confident are the team
members (and especially the project
manager) in their ability to achieve the
new set of goals?
If the minimum goals appear

unachievable (and they are truly minimal),
a recommendation to cancel the project
may be the only remaining realistic course
of action.

7. Rebuild the Team
Based on the evaluation of the team (see
step four) it may be necessary to restruc-
ture and even partly re-staff the team to
handle the new set of goals.

A halted software project can mean a
team that is demotivated and demoralized.
But in all probability, if the project was in
deep trouble before it was halted, then the
low morale did not start with the decision

to halt the project. However, the issue of
team morale should be a major considera-
tion in rebuilding the project team (this
will be further discussed later).

In rebuilding the team, consider the
following points:
• Team Structure. Is the project team

structured optimally for the success of
the project?

• Team Functions. Are the necessary
team functions staffed?

• Team Members. Are there team
members who should be replaced?

• Team Leaders. Are there team leaders
who should be replaced?

• Project Manager. Is the project man-
ager the right person to lead this pro-
ject?

8. Risk Analysis
In all phases of a software development
project, risk analysis is virtually an indis-
pensable tool – this is particularly true of a
failing project trying to get back on track.
The process identifies risk events, mitiga-
tion steps and contingency plans, and
assigns tracking responsibilities4.

High-level risk analysis (i.e., anticipat-
ing the most serious potential problems)
should be performed as part of the project
evaluation process. The analysis will not
only help evaluate the chances of success
in restarting the project, it will also help
restore a level of confidence within the
project team.

9. New Estimates and Schedule
Based on the minimal goals and the rebuilt
team, new reasonable high-level estimates
and a new schedule need to be prepared
and the cost-effectiveness of the renewed
project plan should be established. If the
schedule is firm, ensure that budget,
staffing level, and feature set are not also
all fixed (or another catastrophe will
ensue).

In many cases, it may be prudent to
focus primarily on the schedule and fea-
ture set (the other parameters, such as bud-
get and staffing levels, can initially be side-
lined). This means that if the minimal fea-
ture set is firm, then calculate the project
delivery date and vice versa. Remember
that even a generous budget and an unre-
stricted staffing level may not be enough to
resolve the problem of a fixed feature set
with an uncompromising delivery date.

Here is a note on cost effectiveness: In
analyzing the cost of completing a soft-
ware project, only future costs (not costs
already expended) should be considered.
The cost of project completion should
then be compared to the value of the
completed project.

October 2004 www.stsc.hill.af.mil 13

Catastrophe Disentanglement: Getting Software Projects Back on Track

10. Establish Clear Project Review
Milestones
Put in place an early warning system to
ensure that the project does not slip back
into catastrophe mode. Such a system
should include the following:
• The introduction of an efficient and

reliable project data collection and
analysis system.

• Clear project evaluation criteria for
management.

• A schedule of frequent project reviews
with well-defined measurable mile-
stones.
After successful completion of these

project evaluation steps, and after deter-
mining that the renewed project plan is
achievable and cost effective, the project
can be restarted.

Case Study
A failing project is often like a hand in a
cookie jar: to get some cookies out, you
first have to let some go. Such was the case
at Motorola with the software for a wire-
less telephony5 control and maintenance
center (CMC) that we delivered several
years ago as part of a 200,000-subscriber
project to one of the emerging Eastern
European countries (see [5]). The specially
tailored CMC was a last minute add-on to
the wireless telephony contract and was
consequently not well defined.

The CMC was developed with a sub-
contractor team, based on an existing con-
trol system. The first phase of the project
was devoted to producing a voluminous
set of requirements, none of which could
be omitted (according to the customer).
The schedule was dictated – 16 months,
which was set as close as possible to the
date the subscriber telephony system was
to become operational. Needless to say,
every month was critical.

Five months into the project, key dates
were already being missed. Seven months
into the project, doubts began arising
among senior management about whether
the project would be ready on time. Nine
months into the project, senior manage-
ment was trying to calculate how much the
late delivery penalties would cost, and a
frantic marketing team was looking for
alternatives. At all junctures, the develop-
ment team was adamant that they would
deliver the project on time.

At the end of nine months, amid sig-
nificant resistance from the development
and marketing teams, we brought the
project almost to a complete halt (some
tasks did continue). Two activities were
then launched: (a) a total external review
of the project, and, in parallel, (b) cus-
tomer negotiations were reopened on the

CMC requirements.
• The project status was evaluated and it

was confirmed that the then-current
rate of progress would lead to a major
project overrun. The team was moving
forward at a steady pace but there was
no way that they could meet the deliv-
ery date, or any date close to it.

• Because the CMC was critical for the
operation of the whole system, the
customer was cooperative in reevaluat-
ing the project’s software features.
Thus, a new set of minimal require-
ments was prepared.

• The project was rescheduled with two
release dates: the first with the minimal
feature set and the second with the
remaining features.

• On the development team side, instead
of using a single team for develop-
ment, installation, and support, a coop-
erative effort was launched together
with a local support team.

• Frequent project progress reviews were
initiated by management with key
development team members together
with the customer.
As a result, a working CMC system was

delivered on time and the full telephony
system became operational as planned.
The additional CMC features were provid-
ed as part of a later second release.

The Customer Perspective
Some software organizations’ attitude
toward customers is reminiscent of the
librarian who disliked readers removing
books from the library shelves because
they disrupted the tidy placement of the
books on the shelves. The librarian had
confused means (the library) with goals
(reading books). In software develop-
ment, we also sometimes tend to confuse
means (the project) with goals (customer
satisfaction6).

There is justification for a project only
as long as there are willing customers for
its product. Hence, it is wise for both man-
agement and the project team to keep an
ever-watchful eye on the customers: their
needs, their expectations, and their opinion
of the software being developed. After all,
the continued development of a product
that no longer has a willing customer (or
user) is the ultimate project catastrophe.

Post-Project Reviews
Getting a failed software project back on
track is an admirable accomplishment, but
an even greater one is not having it go off
track in the first place. Therefore, part of
the catastrophe disentanglement proce-
dure is preventing future recurrences of
similar catastrophes. This is achieved

through a special review process held after
the project has ended (successfully or oth-
erwise).

The post-project review is a process
intended to facilitate an understanding of
why a project evolved the way it did. What
was done right? What was done wrong?
What can be done better next time7? The
review is a structured process that is not
intended to find the guilty or to lay any
blame, and is best done with a trained
facilitator.

The output of the review includes a list
of operational, procedural, and organiza-
tional changes and actions to ensure that
mistakes are not repeated and successes
are. In fact, the U.S. Army recommends
that 50 percent of the review be devoted
to discussions on how to do better in the
future; the remaining time is devoted to
what happened (25 percent), and why (25
percent) [7].

The Human Factor
The process of disentangling catastrophes
is traumatic not just for the project team,
but for the organization itself. Clearly, halt-
ing a project does not add to the motiva-
tion of a project team. Similarly, declaring
a project to be a catastrophe does not add
to the prestige of a development organiza-
tion – though the courage to make such a
decision often deserves praise.

While a highly motivated team is cer-
tainly one of the primary factors for pro-
ject success, the fear of demotivating a
team or tarnishing an organization’s image

Warning Signs to Watch for
in a Project:

• It is late and getting later.
• It is over budget and getting more so.
• Performance is poor and getting

poorer.
• Criticism from customers/users is

severe.

Choosing a Project Evaluator
• External (this might be the time to

use a good consultant).
• Reliable, pragmatic, and experienced.
• Understands the project technology.
• Has good social skills.
• Can devote sufficient time.

The Post-Project Review
• What happened? (25%)
• Why did it happen? (25%)
• How to do better in the future?

(50%)
• Who/what is to blame? (0%)

Project Management

14 CROSSTALK The Journal of Defense Software Engineering October 2004

should never be a reason to allow a team to
continue in the wrong direction.
Catastrophe disentanglement should be
viewed like corrective surgery: just as the
body undergoes trauma in order to heal, so
does the development organization.

One of the problems with the rather
drastic measures of catastrophe disentan-
glement is that the knowledge that an orga-
nization will take such measures can inhib-
it the flow of accurate information (partic-
ularly bad news) to senior management.
But successful corrective action, just like
successful surgery, depends on the flow of
truthful and accurate information even, in
fact especially, when the news is bad.

The ability to bring bad tidings and
make unpopular decisions is a desirable, if
not entirely common, part of an organiza-
tion’s culture. Former Intel Chief
Executive Officer Andy Grove said:

… If you are a middle manager you
[may] face … the fear that when
you bring bad tidings you will be
punished, the fear that management
will not want to hear the bad news
from the periphery. Fear that might
keep you from voicing your real
thoughts is poison. Almost nothing
could be more detrimental to the
well-being of the company. [8]

Grove’s point is that effective correc-
tive action requires accurate information –
a reality not unfamiliar to those of us who
drive a car: We cannot effectively steer a
vehicle on the road if we cannot get accu-
rate data. Thus, an organization that wants
to be able to effectively evaluate its activi-
ties with processes such as the one
described here, needs to promote the flow
of accurate information by ensuring the
following:
• The process is open and fair (not secre-

tive).
• The staff is briefed about the process

and the reason it is being adopted.
• The organization promotes a mistake-

tolerant culture8. Blame and punish-
ment need to be eliminated from the
evaluation process (mistakes should be
addressed in normal performance
reviews alongside successes and
achievements).

Conclusion
Most software catastrophes were troubled
projects that went on for too long. Part of
the trauma of dealing with them is the
realization that “this shouldn’t have hap-
pened,” or “we should have seen it com-
ing.” Realizing this, the call to action is:
“Something has to change around here.”

Returning to Johnson’s “Who Moved
My Cheese?” the tale continues:

The littlepeople were outraged,
shocked, scared, and befuddled
when the cheese disappeared. In
their comfort, they didn’t notice the
cheese supply had been dwindling,
nor that it had become old and
smelly. They had become compla-
cent. [1]

How better to describe the failing of a
software project?◆

References
1. Johnson, Spencer, and Kenneth H.

Blanchard. Who Moved My Cheese?
An Amazing Way to Deal With Change
in Your Work and in Your Life.
Putnam Pub Group, 1998.

2. Bennatan, E.M. “The State of
Software Estimation: Has the Dragon
Been Slain?” Part 1. Executive Update
3.10. The Cutter Consortium, July
2002.

3. Brooks, Fredrick P. “The Mythical Man
Month After 20 Years.” The 17th
International Conference on Software
Engineering, Seattle, WA, Apr. 23-30,
1995.

4. Bennatan, E.M. On Time Within Bud-
get: Software Project Management
Practices and Techniques. 3rd ed. John
Wiley & Sons, 2000.

5. Bennatan, E.M. “Wireless Local Loop
in Hungary – A Case Study.” New
Telecom Quarterly 2nd Quarter, 1997
< w w w. t f i . c o m / p u b s / n t q / a u t h
-BennatanElli.html>.

6. Sullivan, Gordon R., and Michael V.
Harper. Hope Is Not a Method. Times
Business, Random House, 1996.

7. Meliza, Larry L. A Guide to Standard-
izing After Action Review (AAR) Aids.
Report No. A348953. Orlando, FL:
U.S. Army Research Institute, Field
Unit, 1998 <www.stormingmedia.us/
34/3489/A348953.html>.

8. Grove, Andrew S. Only the Paranoid
Survive. HarperCollins Business, 1996.

9. Farson, Richard E., and Ralph Keyes.
“The Failure-Tolerant Leader.” The
Harvard Business Review 1 Aug. 2002.

Notes
1. To be statistically accurate, the results

may have included some projects that
were finished early, but we risked the
speculation that such cases (if any)
would only represent a small fraction
of the results.

2. The term customer here refers to the enti-
ty that requested the project or that will

use its product, or more generally, for
whom the project is being developed.

3. Fred Brooks [3] tells the story of a
senior naval officer’s last minute
requirement after many months of
negotiating features, schedule, and cost
for a new navy helicopter. “It must be
able to fly across the Atlantic,” he stat-
ed. Only after laboriously explaining to
him the enormous complexity that it
added to the project was the officer
willing to drop the requirement.

4. For an overview of basic software pro-
ject risk analysis, see [4].

5. Telephony here refers to the provision of
telephone-related services.

6. Yes, profitability is usually a good goal,
too.

7. A useful overview of a generic, after-
action review process, which can be
easily adapted for software projects, is
given in [6].

8. For an interesting discussion of a mis-
take-tolerant business culture, see [9].

About the Author

E.M. Bennatan is presi-
dent of Advanced Proj-
ect Solutions, Inc., where
he assists development
companies in software
project catastrophe disen-

tanglement, introduction of orderly
process into ad-hoc organizations, organi-
zational structure, simplification of exist-
ing processes, and management of multi-
national development. Bennatan spent
many years as senior director at Motorola
leading multinational design centers and
developing wireless access systems. He
was also responsible for program manage-
ment of Motorola’s High Availability
Systems corporate-wide initiative. Before
Motorola, Bennatan spent several years
developing defense and aerospace systems
in the U.S. and overseas. Bennatan has
authored several articles and books,
including “On Time Within Budget:
Software Project Management Practices
and Techniques,” and is a senior member
of the Institute of Electrical and
Electronics Engineers and a member of
the Association for Computing Machinery.

Advanced Project Solutions, Inc.
One Northfield Plaza
Northfield, IL 60093
Phone: (847) 441-3229
E-mail: bennatan@advancedps.com

